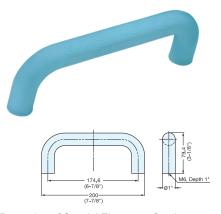


HANDLE

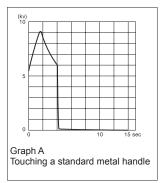
XLA-HA

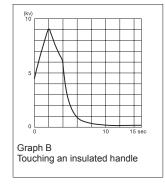
Item No.	L	С	Weight (g)	Box (pcs)	Carton (pcs)	
XLA-HA96	109	96 (3-25/32")	132		80	
XLA-HA128	141	128 (5-1/32")	142	20		
XLA-HA192	205	192 (7-9/16")	144			
XLA-HA256	269	256 (10-5/64")	180	10	60	
XLA-HA320	333	320 (12-19/32")	200	10	00	

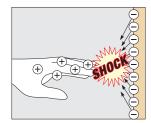

No.	Part Name	Material	Finish
1	Bar	Aluminum Alloy	Anodized
2	Post	Zinc Alloy	Matte Silver

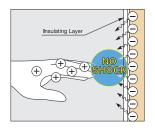
HANDLE

SGH-200




- SGH-200 is a specially insulated handle designed to reduce shock from static electricity build-up as well as inhibit bacterial transfer.
- Textured, soft handle improves grip in manufacturing environments where lubricants are used, improving conditions when slippage is a safety concern.
- Un-obtrusive light blue color.
- Suitable for use in environments -22°F to 176°F (-30°C to 80°C).
 For use in medical, pharmaceutical, and electronic equipment;
- For use in medical, pharmaceutical, and electronic equipment for use in educational, institutional, and industrial facilities where limiting transfer of static electricity or bacteria is important to operations.


Note: Details provided for this hardware's properties/specifications are for general information only. Grounding is required to discharge electricity, and shock reduction is effective only when installed on electrically conductive surfaces. Safety of a final product or equipment is not guaranteed when used as a component. This hardware is designed to reduce-not completely eliminate-shock from static electricity. Sensitivity to shock may vary.


Properties of Special Elastomer Coating

Pathway of Electrical Discharge

In the figures above, a human hand with a positive charge is approaching a conductive surface with a negative charge (e.g., metal). The figure on the right incorporates a layer to insulate the discharge.

The y-axis represents the natural voltage of the human body (in kiloVolts), and the x-axis represents elapsed time (in seconds). Contact with the hardware occurs at the 4 second mark.

There is an instantaneous discharge to 0kV in Graph A, compared to a delayed discharge to 1kV over 2 seconds in Graph B. This would result in a stronger electric discharge and shock for a metal handle (Graph A) compared to the SGH-200 (Graph B).

Direct physical contact with a conductive surface (metal, etc.) may result in a discharge of static electricity, causing discomfort. The insulating coating of the SGH-200 acts as a buffer to reduce the rate of discharge and lessen the resulting shock (depicted above). The elastomer used for insulation incorporates a resin specially formulated for a specific conductivity.

Item No.	Color	Material	Weight (g)	Box (pcs)	Carton (pcs)
SGH-200	Light Blue	Base Material: Polyamide; Coating: Special Elastomer	250	20	200