2

Series 6 directly operated solenoid valves

2/2-way - Normally Closed (NC)

3/2-way - Normally Closed (NC), Normally Open (NO)

- » Ports: G1/8, G3/8, cartridge Ø4
- » Available also in version for the low temperatures up to -50°C

The bodies of these valves can be used either individually or in manifolds. The latter are provided with G1/8 threaded ports or an inbuilt diameter 4 cartridge(G3/8 for 2-way only).

Series 6 solenoid valves are available as 2/2 and 3/2-way, either NC or NO.

These directly operated solenoid valves can be used either with or without lubrication.

GENERAL DATA

TECHNICAL FEATURES

Function 2/2 NC - 3/2 NC - 3/2 NO Operation direct acting poppet type

Pneumatic connections G1/8, G3/8 threads - ø4 fitting - CNOMO interface

Nominal diameter $2\,...\,4\;mm$

80 ... 350 NI/min (air @ 6 bar Δ P 1 bar) Nominal flow

Flow coefficient kv (l/min) Operating pressure

Operating temperature 0°C ÷ 60°C (seals in FKM) / -50°C ÷ +50°C (seals in NBR)

filtered air, class 5.4.4 (5.1.4 for versions -50°C) according to ISO 8573-1 (max oil viscosity 32 cSt), inert gas Media

ON <15 msec - OFF <15 msec Response time

Manual override see tables Installation in any position

MATERIALS IN CONTACT WITH THE MEDIUM

Body nickel-plated brass - anodized aluminium Seals

FKM (NBR for versions -50°C)

stainless steel Internal parts

ELECTRICAL FEATURES

12 ... 110 V DC - 24 ... 230 V AC 50/60 Hz

Voltage tolerance ±10% (DC) - +10% ÷ -15% (AC)

Power consumption 10 W (DC) - 19 VA (inrush AC), 12 VA (holding AC)

Duty cycle ED 100% Electrical connection H (180°C)

Protection class with connector DIN EN 175 301-803-A

IP65 with connector

Special versions available on demand

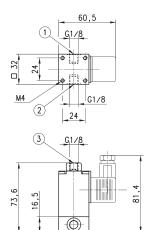
_

CONTROL

CODI	NG EXAM	1PLE								
6	3	8	М		105		Α	6	В	
6	3	0	IVI	_	105	-	A	0	Ь	
6	SERIES:									
3	NUMBER O 0 = interface 2 = 2-way N 3 = 3-way N 4 = 3-way N	IC IC	UNCTIONS:							
8	CONNECTI 0 = interface 3 = G3/8 8 = G1/8 C = cartridg	9								
M	M = manifol	d								
105	15E = threa 15F = threa 15G = threa 450 = base 457 = base 101 = single 102 = manif 104 = manif 105 = manif 106 = manif 107 = manif 109 = manif 110 = manif 111 = manif 112 = manif 113 = manif 114 = manif 115 = manif	ded body G1/8 - ded body G3/8	orifice Ø 2.5 mm orifice Ø 3 mm orifice Ø 4 mm erface							
Α	COIL MATE A = PPS									
6	SOLENOID 6 = 32x32	DIMENSIONS:								
В	SOLENOID B = 24V 50/ C = 48V 50/ D = 110V 50 E = 230V 50 2 = 12V DC 3 = 24V DC 4 = 48V DC 6 = 110V D0	60Hz 60 Hz 0/60 Hz 0/60 Hz								
	VERSIONS = standard LT = for low									

2

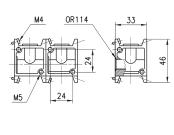
3

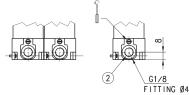

3/2-way NC and NO solenoid valve, G1/8 - Mod. 638 and Mod. 648

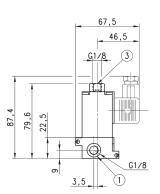
These valves are particularly suitable for operating single-acting cylinders or for use as signal valves.

In the mod. 648-150-A6* (NO) connections 1 and 3 are inverted, while the max operating pressure is 6 bar in case a solenoid A6B, A6C, A6D, A6E is chosen.

* = choose the solenoid voltage according to the CODING EXAMPLE


Mod.	Ports	Function	Orifice Ø (mm)	kv (l/min)	Qn (NI/min)	Pressure min-max (bar)	Symbol
638-150-A6*	G1/8	NC	2	2.0	130	0 ÷ 10 [DC]	EV03
648-150-A6*	G1/8	NO	2	1.2	80	0 ÷ 8 [DC] - 0 ÷ 6 [AC]	EV05


3/2-way NC solenoid valve - Mod. 638M and Mod. 63CM

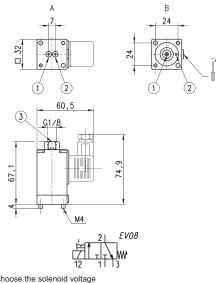

These solenoid valves are equipped with a manual override and are available with G1/8 inlet ports and with G1/8 outlets or with a diameter 4 cartridge. The body is supplied complete with screws and O-ring.

* = choose the solenoid voltage according to the CODING EXAMPLE

EV08

Mod.	Inlet	Outlet	Orifice Ø (mm)	kv (l/min)	Qn (NI/min)	Pressure min-max (bar)
638M-101-A6*	G1/8	G1/8	2	1.8	120	0 ÷ 10
63CM-101-A6*	G1/8	cartridge Ø 4	2	1.6	108	0 ÷ 10

CK CAMOZZI



3/2-way NC solenoid valve - Mod. 600

These solenoid valves are equipped with an override and are available with two types of

A = fixed interface

B = swivel interface

n-max (bar)	*
10	а

Pressure min-max (bar)	* = choose the solenoid vo
0 ÷ 10	according to the CODING
0 ÷ 10	EXAMPLE

Interface

Swivel

Fixed

Orifice Ø (mm)

2

2

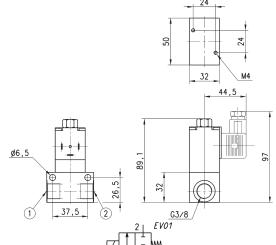
kv (l/min)

1.6

1.6

Mod.

600-450-A6*


600-457-A6*

2/2-way solenoid valves NC, G3/8 - Mod. 623

Qn (NI/min)

106

106



* = choose the solenoid voltage according to the CODING EXAMPLE

Mod.	Orifice Ø (mm)	kv (l/min)	Qn (NI/min)	Min-max pressure (bar)
623-15E-A6*	2.5	3.4	220	0 ÷ 12 [AC 50Hz] - 0 ÷ 15 [DC]
623-15F-A6*	3	4.5	290	0 ÷ 10 [AC 50Hz] - 0 ÷ 14 [DC]
623-15G-A6*	4	5.4	350	0 ÷ 4 [AC 50Hz]-0 ÷ 7 [DC]

Connector Mod. 124-... DIN EN 175 301-803-A

Protection class IP65

Mod.	description	colour	working voltage	cable holding	tightening torque
124-800	connector, without electronics	black	-	PG9/PG11	0.5 Nm
124-702	connector, varistor + Led	black	110 V AC/DC	PG9/PG11	0.5 Nm
124-701	connector, varistor + Led	black	24 V AC/DC	PG9/PG11	0.5 Nm
124-703	connector, varistor + Led	black	230 V AC/DC	PG9/PG11	0.5 Nm