Series CST－CSV－CSH，CSB－CSC－CSD magnetic proximity switches

Reed
Magnetoresistive－Hall effect（Series CST，CSV，CSH only）

» Series CST，CSV， CSH：integrated into actuators profile，with or without M8 connector
» Series CSB：for CGA－ CGP－CGC grippers
» Series CSC：for CGLN grippers
» Series CSD：for CGSN－ CGPT－CGPS－RPGB grippers

The switches are available in two different versions－Reed with mechanical switching and with electronic switching－and they are subdivided into Hall effect and Magnetoresistive．The electronic versions are suggested for heavy duty with frequent operations and strong vibrations．

The magnetic proximity switches define the position of the cylinder piston．When the internal contact is actuated by a magnetic field，the sensors complete an electrical circuit and provide an output signal to actuate directly a solenoid valve or a PLC．A yellow or led LED diode shows when the internal magnetic contact is closed．

GENERAL DATA

	Series CST，CSV，CSH	Series CSB，CSC，CSD
Operation	Reed contact Magnetoresistive Hall effect	Reed contact（CSB，CSC only） Magnetoresistive（CSD only）
Type of output	Static or electronic PNP	
Type of contact in Reed switches	Normally Open（NO），Normally Closed（NC）	Normally Open（NO）
Voltage	see the characteristics of each model	see the characteristics of each model
Max current	see the characteristics of each model	see the characteristics of each model
Max load	8 W DC and 10 VA AC（Reed） 6 W DC（Magnetoresistive－Hall effect）	8 W DC and 10 VA AC 6 W DC（Magnetoresistive）
Protection class	IP67	IP66
Materials	plastic body encapsulating epoxy resin； cable in PVC， connector in PVR，connector body in PU	plastic body encapsulating epoxy resin
Mounting	directly into the groove or by means of adapters	directly into the groove
Signalling	by means of a yellow diode Led	by means of a red Led
Protections	see the characteristics of each model	see the characteristics of each model
Switching time	$\begin{aligned} & <1,8 \mathrm{~ms} \text { (Reed) } \\ & <1 \mathrm{~ms} \text { (Magnetoresistive - Hall effect) } \end{aligned}$	$<1 \mathrm{~ms}$
Operating temperature	$-10^{\circ} \mathrm{C} \div 80^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C} \div 60^{\circ} \mathrm{C}$
Electrical duration	10000000 cycles（Reed） 1000000000 cycles（Magnetoresistive－Hall effect）	
Electrical connections	with a 2 －wire cable，section $2 \times 0.14,2 \mathrm{~m}$（standard）， high flexibility； with a 3 －wire cable，section $3 \times 0.14,2 \mathrm{~m}$（standard）， high flexibility； with a M8 connector and cable of 0.3 m	with a 2 －wire cable，section $2 \times 0.14,2 \mathrm{~m}$（standard）， high flexibility（CSB，CSC only）； with a 3 －wire cable，section 3×0.14 ， 2 m （standard）， high flexibility（CSD only）； with a M8 connector and cable of 0.3 m （CSD only）

SERIES CST, CSV, CSH CODING EXAMPLE

CS	T	2	2	0	N	-	5
CS	SERIES						
T	$\begin{aligned} & \text { TYPE OF SLOT: } \\ & \begin{array}{c} \text { T=T.s.ot } \\ \text { V= }=\text { S.sot } \\ H=- \text { s.sot } \end{array} \end{aligned}$						
2	OPERRTION:$2=$ Reed$3=$ Magnoloresisive4= Red d$5=$ Hal effect						
2	Connections $2=2$ wires (Reed only) $3=3$ wires $5=2$ wires with M8 connector (Reed only) $6=3$ wires with M8 connector						
0	POWER SUPPLY VOLTAGE: $0=10 \div 110 \mathrm{VDC} ; 10 \div 230 \mathrm{~V} \mathrm{AC} \mathrm{(PNP)}$ $1=30 \div 110 \mathrm{VC} \cdot 30 \div 230 \mathrm{~V}$ (PNP) $2=3$ wires cst (PNP) $3=10 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}(\mathrm{PNP})$ $4=10 \div 27 \mathrm{~V}$ $4=10 \div 27 \mathrm{~V}$ DC (PNP)						
N	$\begin{aligned} & \text { NOTE (CST/CSV-250N only): } \\ & \mathrm{N}=\text { according to orom } \end{aligned}$						
5	LENGTH OF THE CABLE: $=2 \mathrm{~m}$ (CST and CSV only) $2=2 \mathrm{~m}$ $5=5 \mathrm{~m}$						

SERIES CSB, CSC, CSD CODING EXAMPLE

Magnetoresistive and Hall effect switches
Reed switches
$\mathrm{BN}=$ brown
$B U=$ blue
$\mathrm{BK}=$ black

Connecting schemes in series

The 3-wire version of the Reed sensors has been designed to allow the connection of several sensors in series, as there is no voltage drop between the supply and the load.
See connecting scheme.
The voltage drop is 2.8 V for the 2-wire Reed sensors and 1.0 V for 3-wire Magnetoresistive and Hall effect sensors.

```
1 BN = Brown
3 BU = Blue
4 BK = Black
    L = load
```


Magnetic proximity switches with 2 - or 3 -wire cable for T-slot
Note for Mod. CST-220, CST-220-5:
in case of polarity reversing the sensor will still be operating, but the LED diode won't turn on.

Mod.	Operation	Connections	Voltage	Output	Max. current	Max Load	Protection
CST-220	Reed	2 wires	$10 \div 110 \mathrm{~V} \mathrm{AC/DC-230} \mathrm{~V} \mathrm{AC}$	-	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	None
CST-220-5	Reed	2 wires	$10 \div 110 \mathrm{~V} \mathrm{AC/DC-230} \mathrm{~V} \mathrm{AC}$	-	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	2 m
CST-232	Reed	3 wires	$5 \div 30 \mathrm{~V} \mathrm{AC/DC}$	PNP	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing
CST-232-5	Reed	3 wires	$5 \div 30 \mathrm{~V} \mathrm{AC/DC}$	PNP	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing
CST-332	Magnetoresistive	3 wires	$10 \div 27 \mathrm{~V} \mathrm{DC}$	PNP	100 mA	6 W	Against polarity reversing and overvoltage
CST-332-5	Magnetoresistive	3 wires	$10 \div 27 \mathrm{~V} \mathrm{DC}$	PNP	100 mA	6 W	Against polarity reversing and overvoltage
CST-532	Hall effect	3 wires	$10 \div 27 \mathrm{~V} \mathrm{DC}$	PNP	100 mA	6 W	Against polarity reversing and overvoltage
CST-532-5	Hall effect	3 wires	$10 \div 27 \mathrm{~V} \mathrm{DC}$	PNP	100 mA	6 W	Against polarity reversing and overvoltage

Magnetic proximity switches with 2- or 3-wire cable for V-slot
Note for Mod. CSV-220:
In case of polarity reversing the sensor will still be operating, but the LED diode won't turn on.

Mod.	Operation	Connections	Voltage	Output	Max. current	Max Load	Protection	length cable
CSV-220	Reed	2 wires	$10 \div 110 \mathrm{~V} \mathrm{AC/DC-230} \mathrm{~V} \mathrm{AC}$	-	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	2 m	
CSV-232	Reed	3 wires	$5 \div 30 \mathrm{~V} \mathrm{AC/DC}$	PNP	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing	
CSV-332	Magnetoresistive	3 wires	$10 \div 27 \mathrm{~V} \mathrm{DC}$	PNP	100 mA	6 W	Against polarity reversing and overvoltage	2 m

Magnetic proximity switches with M8 3－pin connector for T slot
Note for Mod．CST－250N：
in case of polarity reversing the sensor will still be operating，but the LED diode won＇t turn on．

Cable length： 0.3 m

Mod．	Operation	Connection	Voltage	Output	Max．current	Max load	
CST－250N	Reed	2 wires M8 male 3 pin	$10 \div 110 \mathrm{~V} \mathrm{AC/DC}$	-	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	
CST－262	Reed	3 wires M8 male 3 pin	$5 \div 30 \mathrm{~V} \mathrm{AC/DC}$	PNP	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	None
CST－362	Magnetoresistive	3 wires M8 male 3 pin	$10 \div 27 \mathrm{~V}$ DC	PNP	100 mA	6 W	Against polarity reversing and overvoltage
CST－562	Hall effect	3 wires M8 male 3 pin	$10 \div 27 \mathrm{~V}$ DC	PNP	100 mA	6 W	Against polarity reversing and overvoltage

Magnetic proximity switches with M8 3－pin connector for V slot
Note for Mod．CSV－250N：
in case of polarity reversing the sensor will still be operating，but the LED diode won＇t turn on．

Cable length： 0.3 m

Mod．	Operation	Connection	Voltage	Output	Max．current	Max load	Protection
CSV－250N	Reed	2 wires M8 male 3 pin	$10 \div 110 \mathrm{~V} \mathrm{AC/DC}$	-	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	
CSV－262	Reed	3 wires M8 male 3 pin	$5 \div 30 \mathrm{~V} \mathrm{AC/DC}$	PNP	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	
CSV－362	Magnetoresistive	3 wires M8 male 3 pin	$10 \div 27 \mathrm{~V}$ DC	PNP	100 mA	6 W	Against polarity reversing and overvoltage

\square Magnetic proximity switches with 2 - or 3 -wire cable for H -slot
Note for Mod. CSH-223-2, CSH-223-5, CSH-221-2, CSH-221-5:
in case of polarity reversing the sensor will still be operating, but the LED diode won't turn on.

Suitable also for T-slots

Mod.	Operation	Connection	Voltage	Output	Max current	Max load	Protection
CSH-223-2	Reed	2 wires	$10 \div 30 \mathrm{~V} \mathrm{AC/DC}$	-	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing
CSH-223-5	Reed	2 wires	$10 \div 30 \mathrm{~V} \mathrm{AC/DC}$	-	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing
CSH-221-2	Reed	2 wires	$30 \div 230 \mathrm{~V} \mathrm{AC} \mathrm{-} \mathrm{30} \div 110 \mathrm{~V} \mathrm{DC}$	-	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing
CSH-221-5	Reed	2 wires	$30 \div 230 \mathrm{~V} \mathrm{AC} \mathrm{-} \mathrm{30} \mathrm{\div 110} \mathrm{~V} \mathrm{DC}$	-	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	5 m
CSH-233-2	Reed	3 wires	$10 \div 30 \mathrm{~V} \mathrm{AC/DC}$	PNP	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing
CSH-233-5	Reed	3 wires	$10 \div 30 \mathrm{~V} \mathrm{AC/DC}$	PNP	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing
CSH-334-2	Magnetoresistive	3 wires	$10 \div 27 \mathrm{~V} \mathrm{DC}$	PNP	250 mA	6 W	Against polarity reversing and overvoltage
CSH-334-5	Magnetoresistive	3 wires	$10 \div 27 \mathrm{~V} \mathrm{DC}$	PNP	250 mA	6 W	Against polarity reversing and overvoltage

Magnetic proximity switches wtih M8 3-pin connector for H-slot
Note for Mod. CSH-253:
in case of polarity reversing the sensor will still be operating, but LED diode won't turn on.

'H'

Suitable also for T-slots
Cable length: 0.3 m

Mod.	Operation	Connection	Voltage	Output	Max current	Max load	Protection
CSH-253	Reed NO	2 wires M8 male 3 pin	$10 \div 30 \mathrm{~V} \mathrm{AC/DC}$	-	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing
CSH-263	Reed NO	3 wires M8 male 3 pin	$10 \div 30 \mathrm{~V} \mathrm{AC/DC}$	PNP	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing
CSH-364	Magnetoresistive	3 wires M8 male 3 pin	$10 \div 27 \mathrm{~V}$ DC	PNP	250 mA	6 W	Against polarity reversing and overvoltage
CSH-463	Reed NC	3 wires M8 male 3 pin	$10 \div 30 \mathrm{~V} \mathrm{AC/DC}$	PNP	250 mA	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing
$\frac{1 / 9.05 .06}{351}$						General term	Products designed for industrial applicatio conditions for sale are available on www.camozzi.co

Magnetic proximity switch with 2－wire cable for B－slot
$A=$ fixing screw $-B=$ Led indicator $-C=$ ideal position detection

| Mod． | Operation | Connection | Voltage | Output | Max．current | Max load | Protection |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSB－D－220 | Reed | 2 wires | $10 \div 110 \mathrm{~V} \mathrm{AC/DC}$ | PNP | 50 mA | $8 \mathrm{~W} / 10 \mathrm{VA}$ | Against polarity reversing and overvoltage |

Mod．	Operation	Connection	Voltage	Output	Max．current	Max load	Protection
CSB－H－220	Reed	2 wires	$10 \div 110 \mathrm{~V} \mathrm{AC/DC}$	PNP	50 mA	$8 \mathrm{~W} / 10$ VA	Against polarity reversing and overvoltage

Magnetic proximity switch with 2-wire cable for C-slot
$A=$ fixing screw $-B=$ Led indicator $-C=$ ideal position detection
'C'

In case of polarity reversing the sensor will still be operating, but the LED diode won't turn on.

Mod.	Operation	Connection	Voltage	Output	Max. current	Max load	Protection	
CSC-D-220	Reed	2 wires	$10 \div 110 \mathrm{~V} \mathrm{AC/DC}$	PNP	50 mA	$8 \mathrm{~W} / 10 \mathrm{VA}$	Against polarity reversing and overvoltage	

Magnetic proximity switch with 2-wire 90° cable for C-slot

Magnetic proximity switches, 3 -wire cable, D-slot with 90° cable

Mod.	Operation	Connections	Voltage	Output	Max. current	Max Load	Protection	
CSD-H-334	Magnetoresistive	3 wires	$10 \div 27 \mathrm{~V} \mathrm{DC}$	PNP	200 mA	6 W	Against polarity reversing and overvoltage	2 m
CSD-H-334-5	Magnetoresistive	3 wires	$10 \div 27 \mathrm{~V} \mathrm{DC}$	PNP	200 mA	6 W	Against polarity reversing and overvoltage	

Cable length: 0.3 m

Load curves CSH，CST／CSV

```
Load curve－CSH
```


Load curve－CSH

Load curve－CST／CSV

（V）

Load curve－CST／CSV

Load curve－CSH，CST／CSV

Load curves CSB／CSC，CSD

Load curve－CSD
CSD－D－334 CSD－H－334 CSD－D－364 CSD－H－364

DC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric ciruit with protection against the voltage spikes.
See picture above for a typical example.
Legend:
1 = Sensor
2 = Load
3 = Protection diode

Electric circuit with protection against voltage spikes

DC and AC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric ciruit with protection against the voltage spikes.
See picture above for a typical example.
Legend:
1 = Sensor
2 = Load
3 = Protection varistor

AC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric circuit with protection against the voltage spikes.
See picture above for a typical example.
Legend:
1 = Sensor
2 = Load
$C+R=$ Series of resistor and protection capacitor

Mounting of Series CST - CSH sensors
CST/CSH sensors can be directly
mounted on the following cylinders:
Series 31-31R
Series 32-32R
Series 52
Series 61
Series 62 (CSH only)
Series 69
Series QC - QCBF - QCTF

CSH

	Mounting of Series CSV sensors
CSV sensors must be assembled	
directly into the groove of cylinders:	
Series $50 \varnothing 16 \div 25$	
Series QP - QPR $\varnothing 12 \div 16$	

3-wire extension with M8 3-pin female connector
With PU sheathing, non shielded
cable.
Protection class: IP65

$1 \mathrm{BN}=$ Brown
$3 \mathrm{BK}=$ Black
$4 \mathrm{BU}=$ Blue

In case 2-wire sensors with M8 connector (Mod.
CST-250N, CSV-250N, CSH-253) are used,
please connect the brown wire to the supply (+) and the black wire to the load.

Mod.	$\mathrm{L}=$ cable length (m)	
CS-2	2	
CS-5	5	
CS-10	10	Croducts designed for industrial applications.
$1 / 9.05 .14$		
359		

Adapters Mod. S-CST-25.. 28 for Series CST-CSH sensors

Material: anodized aluminium

Mod.	Cylinders series	\varnothing
S-CST-25	$60-90-63 M T$	$32 \div 63$
S-CST-26	$60-90-63 M T$	$80 \div 100$
S-CST-27	$60-90-63 M T$	125
S-CST-28	40	$160-200$

CONTACT STROKE AND HYSTERESIS - correct use of magnetic sensors

The magnetic sensors consist of a reed switch which is contained in a glass bulb filled with a rarefied gas. The switches (or contacts) that are made of magnetic material (nickel-iron) are flexible and are coated, at the contact points, with high quality non-arcing materials. Switching is effected by means of a suitable magnetic field and actuation is achieved by means of the permanent magnet inside the piston.

NOTE: THE PRESENCE OF IRON MASSES NEAR THE CYLINDER OR THE GRIPPERS (LIKE IRON SCREWS AND FIXING PLATES) CAN CHANGE THE DIRECTION AND THE POWER OF THE MAGNETIC FIELD.

The Reed sensors are Normally Open, therefore, when subjected to the effect of the magnetic field, close the circuit.

OPERATING FIELD OF SENSORS
WITH RESPECT TO THE MAGNETIC PISTON (below picture)
The maximum speed (in $\mathrm{m} / \mathrm{second}$) for a cylinder guided by magnetic sensors is given by $b / t=$ speed where.
$\mathrm{b}=$ contact stroke in mm (see the table) - this value indicates the amplitude of the magnetic field or switching field when the circuit is closed
= total reaction time in milliseconds of the electric control components
connected downstream of the sensor
$H=$ operational hysteresis of the sensor with respect to the shape and amplitude of the magnetic field.
$\mathrm{A}=$ magnet
$B=$ actuator
$\mathrm{X}=$
$Y=$
The operating field, as a result of hysteresis, is displaced by the value H in the opposite direction to movement of the cylinder. The maximum speed permitted for each cylinder depends on value b and on reaction time of the different components connected downstream of the sensor.

Series	\varnothing	b (mm)	$\mathrm{H}(\mathrm{mm})$	Series	\varnothing	b (mm)	H (mm)	Series	\varnothing	b (mm)	H (mm)
24-25	16	9.2	1.2	60	32	9.9	1	62-63-6PF	32	10	1
24-25	20	12	1	60	40	8.9	1.2	62-63-6PF	40	11	1
24-25	25	11.7	1.1	60	50	10.7	1	62-63-6PF	50	12	1.2
27	20	10.5	1.6	60	63	12.9	1.2	62-63-6PF	63	13	1
27	25	10.9	1.6	60	80	11.5	1.4	62-63-6PF	80	13	1
27	32	10.7	1.1	60	100	14.9	1.4	62-63-6PF	100	16	1
27	40	12.1	1.7	60	125	22	1	52	25	19.3	1.8
27	50	12.1	1.2	61	32	9	1	52	32	27.9	1.6
27	63	14.1	1.3	61	40	9.3	1.3	52	40	26	2.3
QP	12	10	1.3	61	50	11	1.6	52	50	39.9	2.9
QP	16	11.8	1.5	61	63	13.4	1.3	52	63	40.7	4.2
QP	20	11.1	1.6	61	80	13.2	1.6				
QP	25	10.6	1.6	61	100	15.2	1.7				
QP	32	12.7	1.2	61	125	22.1	1.3				
QP	40	12.5	1.1	42	32	10.8	1.5				
QP	50	15.4	1.6	42	40	11.2	1.6				
QP	63	16.7	1.5	42	50	12.6	1.7				
QP	80	13.2	1.7	42	63	14.1	1.7				
QP	100	16.8	1.8	QCT	20	10	1.7				
31-32-ST	12	9.2	1.4	QCT	25	11.4	1.8				
31-32-ST	16	7.9	1.3	QCT	32	12.1	1.8				
31-32-ST	20	9.1	1.5	QCT	40	12.4	1.8				
31-32-ST	25	10.6	1.5	QCT	50	13.7	1.9				
31-32-ST	32	11.9	1.7	QCT	63	13.5	1.8				
31-32-ST	40	12.9	2.2	69	32	34.5	3.8				
31-32-ST	50	14.7	1.2	69	40	29.6	4.1				
31-32-ST	63	15.2	1.4	69	50	31.5	4.6				
31-32-ST	80	16.6	1.8	69	63	32.3	3.1				
31-32-ST	100	16,8	1,7	69	80	24	2.9				
40	160	24	2	69	100	25.6	2.9				
40	200	26	2	69	125	30.1	1.7				

